From time immemorial, new technology has been the herald of changing eras. And with Web3 and Industry 4.0, many experts argue we’re in the midst of one such transition. However, change breeds confusion, so we must ask: “What’s actually changing?”.
That’s what we’ll be exploring today. In this article, we’ll lift the curtain on one of the hottest topics in the commercial space – the Internet of Things (IoT). Along the way, we’ll explain what it is, how it works, and what it means for you.
So, if you like to stay on the bleeding edge of technology and keep ahead of your competition, stay tuned.
What is the Internet of Things?
The Internet of Things typically refers to the concept of interconnecting smart devices with each other and the cloud. Generally speaking, IoT aims to facilitate data exchange without needing human-to-human or human-to-computer interactions.
To do so, IoT-enabled devices feature a variety of sensors and software solutions. Note that the “things” aren’t necessarily just hardware. They can include any natural or man-made object that can be assigned an IP Address and is able to transfer data over a network.

As we’ll discuss in a subsequent section, the side effects of this practice include higher efficiency, better data collection, as well as improved insights and decision-making.
Unsurprisingly, this makes the technology highly valuable to companies across all industries, which use it primarily to deliver better customer service and experiences.
How does IoT work?
An IoT ecosystem is comprised of a network of web-enabled smart devices featuring embedded systems, such as processors, sensors, and communication hardware. These devices then collect, send, and act on acquired data.
The devices use an IoT gateway to share data, which acts as a central point to which all of the technology connects. You can also incorporate an edge device into the system, which analyzes data locally before transferring the scrubbed information to lower bandwidth use.
However, it’s not always a strict device → gateway relationship. Smart gadgets connected to the same network (Wi-Fi, Bluetooth) in the same environment can interact and take action on the data. Some can even use AI and machine learning for maximum efficiency.

This works even without human intervention, but people can still use the devices to accomplish various goals, such as adding new “things”, reading data, and giving instructions.
What are IoT standards?
“Standards” refer to guidelines, specifications, and protocols that establish a common framework for designing, developing, and deploying IoT devices and systems.
They ensure interoperability, security, and consistency across various IoT devices and platforms. Particularly by providing manufacturers, developers, and users with a shared understanding of how IoT should communicate, operate, and interact.
The most notable IoT standards include:
- MQTT (Message Queuing Telemetry Transport):
Een lichtgewicht en efficiënt berichtenprotocol voor kleine sensoren en mobiele apparaten, vaak gebruikt in IoT-toepassingen.
- CoAP (Constrained Application Protocol):
CoAP is ontworpen voor apparaten en netwerken met beperkte middelen en is een lichtgewicht protocol voor communicatie tussen IoT-apparaten.
- HTTP/HTTPS (Hypertext Transfer Protocol/Secure):
Standaard webprotocollen worden vaak gebruikt voor communicatie tussen IoT-apparaten en cloudservices.
- IPv6 (Internet Protocol versie 6):
De nieuwste versie van het Internet Protocol is ontworpen om een grotere adresruimte te bieden voor het groeiende aantal IoT-apparaten.
- DDS (Data Distribution Service):
Een middleware-protocol dat real-time communicatie en gegevensdeling tussen IoT-apparaten in een gedistribueerd systeem mogelijk maakt.
- OPC UA (Open Platform Communications Unified Architecture):
Een standaard voor industriële automatisering die zorgt voor veilige en betrouwbare communicatie tussen IoT-apparaten in de industriële context.
- OneM2M:
Een wereldwijde standaard voor Machine-to-Machine (M2M) communicatie en IoT-interoperabiliteit, die een gemeenschappelijk kader biedt voor verschillende IoT-toepassingen.
- Draad:
Een draadloos mesh-netwerkprotocol met laag vermogen, ontworpen voor IoT-apparaten in domotica en slimme gebouwtoepassingen.
- LoRaWAN (Long Range Wide Area Network):
Een low-power, wide-area netwerkprotocol ontworpen voor lange-afstandscommunicatie tussen IoT-apparaten en gateways.
- FIWARE:
Een open-source platform dat een set standaarden biedt voor het bouwen van slimme oplossingen en toepassingen in de context van slimme steden en industrieel IoT.
Who is responsible for creating IoT standards?
If you’re interested in diving deeper into the emerging world of IoT solutions, several organizations are shaping their standards and practices. They include:
- Internationale Elektrotechnische Commissie,
- Institute of Electrical and Electronics Engineers (IEEE),
- Consortium voor industrieel internet,
- Open Connectivity Foundation,
- Draadgroep,
- Alliantie voor connectiviteitsnormen.
What are IoT frameworks?
Frameworks are software platforms that provide tools, libraries, and services to simplify the development, deployment, and management of IoT applications and devices.
Frameworks play a crucial role in accelerating the development of IoT solutions by offering a standardized foundation for building applications, as they often include features for device communication, data management, security, and integration with cloud services.
The most notable examples of IoT frameworks include:
- Arduino:
Arduino is een open-source hardware- en softwareplatform dat populair is onder hobbyisten en professionals voor het bouwen van IoT-prototypes. Het biedt een verscheidenheid aan ontwikkelborden, bibliotheken en een geïntegreerde ontwikkelomgeving (IDE).
- Raspberry Pi:
Raspberry Pi is een goedkope computer ter grootte van een creditcard die gebruikt kan worden voor verschillende IoT-projecten. Het ondersteunt meerdere programmeertalen en kan verschillende besturingssystemen draaien, waardoor het veelzijdig is voor IoT-toepassingen.
- AWS IoT:
Amazon Web Services (AWS) biedt een uitgebreid IoT-platform met diensten voor apparaatbeheer, beveiliging en gegevensverwerking. Met AWS IoT kunnen ontwikkelaars IoT-apparaten op schaal aansluiten en beheren.
- Microsoft Azure IoT:
Microsoft Azure IoT biedt cloud-gebaseerde diensten voor het bouwen, implementeren en beheren van IoT-toepassingen. Het omvat apparaatvoorziening, berichtenservices en analyseservices die zijn geïntegreerd in het bredere Azure ecosysteem.
- Google Cloud IoT:
Google Cloud IoT biedt een reeks services voor het bouwen en beheren van IoT-toepassingen op het Google Cloud Platform. Het omvat apparaatbeheer, gegevensanalyse en integratie met andere Google cloudservices.
- IBM Watson IoT-platform:
IBM’s IoT-platform biedt tools voor apparaatbeheer, gegevensanalyse en kunstmatige intelligentie. Het is ontworpen om organisaties te helpen schaalbare en intelligente IoT-oplossingen te bouwen.
- Eclipse IoT:
Eclipse IoT is een open-source gemeenschap die een reeks projecten en frameworks biedt voor het bouwen van IoT-oplossingen. Het omvat projecten zoals Eclipse Paho voor MQTT-communicatie en Eclipse Hono voor apparaatconnectiviteit.
- ThingsBoard:
ThingsBoard is een open-source IoT-platform dat apparaatbeheer, gegevensvisualisatie en regelengine-mogelijkheden ondersteunt. Hiermee kunnen ontwikkelaars eenvoudig aangepaste IoT-toepassingen bouwen.
- Particle:
Particle biedt een platform voor het bouwen van IoT-oplossingen gericht op gebruiksgemak. Het omvat hardwareontwikkelingskits, clouddiensten en een platform voor apparaatbeheer.
- Node-RED:
Node-RED is een flow-gebaseerde ontwikkeltool voor het visueel programmeren van IoT-toepassingen. Het biedt een webgebaseerde interface voor het verbinden van apparaten, API’s en online diensten.
What do IoT devices look like in practice?
The Internet of Things encompasses a wide range of devices and use cases. We’ll discuss the individual industry niches a little later, but for now, let’s look at a few examples from both the personal and professional spheres.

Personal IoT device examples:
- Draagbare technologie: slimme horloges en armbanden zijn enkele van de meest voorkomende IoT-apparaten. Ze werken samen met telefoons en andere gadgets om bewegingen bij te houden, berichten te ontvangen en de gezondheid te bewaken.
- Slimme huishoudelijke apparaten: Slimme apparaten, variërend van tv’s tot thermostaten, gloeilampen en sloten, stellen gebruikers in staat om eenvoudiger en op zinvolle manieren met hun huis om te gaan, zelfs op afstand.
- Slimme stadsinfrastructuur: Door gebruik te maken van verschillende sensoren en apparaten met IoT-ondersteuning, zoals verkeerslichten en generatoren, kunnen steden de leefomstandigheden van hun inwoners verbeteren door tijdige waarschuwingen te sturen, verkeersopstoppingen te verhelpen en nog veel meer.
Commercial IoT device examples:
- Conditiebewaking op de werkplek: Om te zorgen voor veilige en gezonde werkomstandigheden gebruiken bedrijven op hun locaties verschillende sensoren voor temperatuur, druk, trillingen en lucht- en waterkwaliteit.
- Apparatuur voor het volgen van bedrijfsmiddelen: Met behulp van RFID- en gps-sensoren kan het internet van de dingen de status en locatie van verschillende bedrijfsmiddelen op locatie en binnen de toeleveringsketen bewaken, waardoor fouten worden voorkomen, geld wordt bespaard en de efficiëntie wordt verhoogd.
- Industriële robotica: Bedrijven kunnen robots en PLC’s (Programmable Logic Controllers) gebruiken om industriële processen te automatiseren, op afstand te besturen en te bewaken, en om gegevens te communiceren naar gecentraliseerde systemen voor meer efficiëntie.
Why are IoT devices important?
Take a moment to think about all the smart gadgets you interact with on a daily basis. Now imagine how much easier life would be if they could all talk to each other and save you the extra time and effort. And that’s just your personal life!
As individuals and companies continue to rely on tech and information more and more, the benefits the Internet of Things offers only continue to grow. Here are a few examples:
- Hogere levenskwaliteit: Zoals hierboven besproken, kunnen slimme auto’s en wearables je persoonlijke leven enorm verbeteren. Maar dat geldt ook voor commerciële omgevingen. Ze kunnen automatisch deuren ontgrendelen voor personeel, laadperrons openen en nog veel meer.
- Verbeterde gezondheidszorg: Draagbare technologie kan de hartslag, bloeddruk en andere vitale functies van een persoon controleren om mogelijke noodsituaties te detecteren en hulp in te roepen of een waarschuwing af te geven, zodat ongelukken worden voorkomen.
- Beter inzicht in gegevens: Door sensoren te integreren in de verschillende machines en werkgebieden, kunnen bedrijven nauwkeurige inzichten krijgen in hun prestaties (apparatuur en werknemers) en betere beslissingen nemen met betrekking tot hun activiteiten.
- Efficiëntere bedrijfsvoering: Informatie van sensoren kan bedrijven helpen hun processen te optimaliseren. IoT-apparaten kunnen de hele operatie ook aanzienlijk automatiseren door te communiceren en te handelen op basis van relevante informatie, zoals het aanvragen van onderhoud.
- Veiligere werkomgevingen: Naast het monitoren van de vitale functies van werknemers, kan het internet van de dingen het risico op potentiële storingen, defecten en gevaren die tot een ongeluk kunnen leiden, identificeren. Ze kunnen ook fungeren als beveiliging, zoals het voorkomen van lock-outs en meer.
- Betere toewijzing van middelen: IoT-apparaten kunnen gebieden identificeren waar processen (bijv. productie) het moeilijk hebben en ze helpen versterken met extra middelen (werknemers, machines). Ze kunnen ook geld besparen door bepaalde taken te automatiseren.
- Versterkte toeleveringsketen: Door de voorraadstatus en de locatie van inkomende/uitgaande zendingen te kunnen volgen, kan het internet van de dingen ertoe bijdragen dat bedrijven goed bevoorraad blijven, nooit leveringen verliezen en op tijd aan hun verplichtingen voldoen.
- Meer duurzaamheid: Door bedrijven in staat te stellen hun hulpbronnen zo efficiënt mogelijk te gebruiken, helpt het ivd hen geld te besparen en langer te bestaan. Dit vermindert echter ook afval en verbetert de algehele duurzaamheid.
What are the challenges of IoT?
Of course, nothing’s ever pure good or bad, and even the Internet of Things has its fair share of downsides. Let’s look at a few reasons why you may reconsider implementing IoT into your life and company processes.

- Beveiligingsproblemen: IoT-apparaten zijn vaak gevoelig voor hacken, wat vooral gevaarlijk is door de enorme hoeveelheden gevoelige (persoons- en prestatie)gegevens die ze verzamelen.
- Gebrek aan standaardisatie: Interoperabiliteit blijft een groot probleem in de IoT-ruimte. Door een gebrek aan gestandaardiseerde besturingsprotocollen kunnen apparaten van verschillende fabrikanten moeite hebben om samen te werken, wat kan leiden tot prestatieproblemen.
- Overbelasting van gegevens: Zonder voldoende veerkrachtige gegevensverwerking kunnen bedrijven overweldigd raken door de enorme hoeveelheid ruwe gegevens die ze ontvangen van IoT, wat kan leiden tot knelpunten en slechtere prestaties.
- Betrouwbaarheid en prestaties: IoT-apparaten zijn gevoelig voor hardwarestoringen en softwarebugs, wat vaak leidt tot onvoorspelbare prestaties, vooral bij grootschalige implementaties.
- Stroomverbruik: Stand-alone IoT-apparaten die niet zijn aangesloten op de hoofdstroomvoorziening hebben werkende batterijen nodig (bijv. sensoren). Dit is echter vaak duur en vereist aanzienlijk onderhoud, waardoor ze mogelijk niet de moeite waard zijn.
- Naleving van regelgeving: Voldoen aan wettelijke vereisten en ervoor zorgen dat IoT-systemen voldoen aan de privacy- en beveiligingsvoorschriften kan een uitdaging zijn, vooral omdat deze voorschriften veranderen.
- Implementatiekosten: Het implementeren en onderhouden van een uitgebreide IoT-infrastructuur kan duur zijn. Uit kostenoverwegingen kunnen kleine en middelgrote ondernemingen problemen ondervinden bij het invoeren van het ivd.
- Beperkte levensduur: Snelle technologische vooruitgang kan leiden tot veroudering van IoT-apparaten, waardoor het voor gebruikers een uitdaging wordt om bij te blijven met de nieuwste functies en beveiligingsupdates.
- Milieu-impact: De verwijdering van verouderde IoT-apparaten draagt bij tot elektronisch afval, wat ecologische uitdagingen met zich meebrengt. Correcte recycling en verwijdering zijn cruciaal om deze impact te beperken.
How do different industries leverage IoT?
So, we’ve talked about some of the stand-alone use cases IoT devices can offer. But if you’re looking for inspiration for taking your business operations to the next level, there’s no better place to start than to look at other companies working in the same space.
Here are a few examples of how different industries use IoT solutions and devices, as well as some real-life case studies, courtesy of IndevaGroup:
IoT in Healthcare
The healthcare industry is rife with IoT opportunities. Clinics and hospitals can use wearable tech to monitor their patient’s vitals on-site and remotely to ensure they receive the necessary care (prescription filling, light adjustment, bed positioning, etc.).
Health tech can also offer autonomous assistance without needing a medical professional to be present. For example, smart insulin pumps can monitor glucose levels in the blood and administer injections at predefined intervals to prevent hypoglycemia.
Medical professionals can use the collected and anonymized patient information to improve treatment decisions and fuel future research efforts. Meanwhile, IoT can also be used for asset tracking and proper stocking.
IoT in healthcare case study: AppSense
With new revolutionary technology in the health sector, a need for smart design for the intended target group arises.
It is estimated that approximately 150,000 Norwegians live with heart fibrillation today and that a third do not know about it themselves. Every day, eight Norwegians get a stroke as a result of heart fibrillation.
The fact that the heartbeat is not always regular means that it can be difficult to detect for healthcare professionals, who often make measurements that do not last longer than a few minutes.
AppSens came to Apphuset to build and deploy a solution ready for clinical trial and later commercialization.
Seven Peaks Software is an international partner of Apphuset. This IoT healthcare case study showcases a project that Apphuset acquired. Then, it outsources the development to us at Seven Peaks Software to cooperatively complete the project as a specialist partner.
The main challenges we identified were providing a simple and intuitive onboarding and app design tailored for the target group and securing system communications using the FHIR standard for healthcare data exchange and ECG decoding and interoperability using the ISO 22077 standard.
The app has developed a wireless sensor that monitors the heart rate for one to two weeks. The app, sensor, and backend perform real-time analysis of the collected data and give the user immediate feedback on their health situation.
Apphuset’s task was to design and develop a mobile application that connects to the sensors and collects data forwarded to the backend for the person’s health data.
The target group for ECG 247 is primarily people older than 60 years. Therefore, it was necessary to ease the use and communication to end users, which are super important features of the solution.
AppSens’ EGC 247 sensor and app detected severe cardiac arrhythmia in test persons, who were then immediately admitted to PSI centers for treatment of blockage.
The EGC 247 has helped prevent heart attacks and has also revealed cardiac fibrillation on several test subjects who have been unaware of their arrhythmia.
IoT in Manufacturing
As mentioned throughout this article, the manufacturing industry can greatly benefit from incorporating IoT solutions. Starting with predictive maintenance, embedded sensors can detect potential malfunctions and request repairs ahead of time.
Speaking of prevention, companies can use similar sensors and wearable tech, such as those used in the healthcare industry, to monitor their employees’ well-being and predict potential accidents ahead of time.
Even more crucially, however, IoT can allow companies to oversee their production process from a single centralized remote dashboard – tracking inventory, managing production, controlling lights and temperature, etc.
This control extends past the walls of the facility and even into fulfillment. IoT devices can track customer deliveries to ensure they arrive on time, place stocking orders, and reinforce the supply chain as a whole.
Finally, IoT-enabled systems can monitor and control energy consumption to save businesses money and reduce waste production, lower their carbon footprint, and increase overall sustainability.
IoT in Manufacturing Case Study: ABB Group
As a global leader in power and automation technologies, Switzerland-based ABB Group has installed a wide variety of power and automation equipment around the globe, ranging from motors, drives, robots, and control systems to transformers, high-voltage and medium-voltage breakers, and low-voltage equipment.
Connecting these devices and systems to communicate and perform the tasks required to keep its customers safe and operational is at the core of ABB’s business.
Among the devices mentioned, ABB’s robots have become essential to the global economy, increasing efficiency and safety across various industries. However, the broad deployment of automation technologies has created challenges in monitoring and maintenance.
ABB’s customers need to know that their machines operate efficiently and minimize downtime when repairs or upgrades are required. The company has addressed these challenges through innovative IoT technologies, which monitor more than 5,000 devices in the field in real time.
Historically, ABB had to send technicians to perform device diagnoses in person. Now, ABB offers several cloud-based IoT solutions, including data aggregation, statistical analysis, and remote control rooms that provide real-time monitoring of individual machines and longitudinal analytics that allow for accurate predictive maintenance.
This proactive monitoring allows ABB and its clients to save on maintenance costs by reducing the time and effort required for upkeep and to reduce costs associated with unexpected downtime by fixing machines before they break.
There is debate about whether in-machine (on-site) or cloud-based monitoring and analysis are more effective. Rather than throwing everything into the cloud simply because it’s a newer application, ABB implements monitoring systems balancing these requirements, resulting in an approach capable of incorporating either or both longitudinal, cloud-based solutions and real-time localized monitoring to provide a comprehensive and effective service, depending on each client’s need.
ABB’s gearless mill drives (GMDs) are just one example of remote monitoring at work. GMDs provide a substantially more efficient means of grinding ore into smaller particles that are more easily processed, a powerful innovation in the mining industry.
While these machines typically operate smoothly, grinding is an intensive process that puts extreme wear and tear on the machine. Failure can delay operations by days or weeks, resulting in substantial losses for the mining operation.
With real-time GMD monitoring, ABB can alert customers in time, allowing maintenance workers time to address any machine problems proactively and prevent unplanned outages.
In one such case, ABB was able to recommend a simple, 30-minute stoppage to replace clogged air filters, saving the client a significant amount of money just by avoiding unplanned downtime.
The deeper knowledge of its machines and how they work has also enabled ABB to add value for its clients by bringing increased efficiency to related operations. In the marine industry, ABB provides electrical components for hybrid-diesel engines.
Though its work is focused on the electrical element of the hybrid engines, ABB’s data collection and analysis have empowered customers to improve diesel operations and avoid costly diversions to conduct repairs, saving time and money.
ABB’s willingness to adjust toward new strategies and services can provide a great model for other companies looking to improve their IoT innovations.
“We originally started by monitoring electrical machines in hybrid systems, but as a result of that monitoring, we started to find room for improvement in engine efficiency. Once we started looking at these engines as a four-generator power plant, we asked customers if they would like optimization.”
– Christopher Ganz, Group Service R&D Manager at ABB
IoT in Construction
Construction and utilities are another industry where IoT can do a lot of good. Its effects start with energy-efficient buildings, which can monitor heating, HVAC units, and lighting, reduce waste, and lower energy consumption.
IoT fulfills similar use cases on construction sites, such as in the manufacturing sphere, by monitoring the environment for threats and ensuring employees stay safe and sound.
However, its impacts also stretch to water management, where they can use sensors to detect leaks and monitor water quality. Last but not least, these systems can also improve the efficiency of installed renewable energy sources to save money and reduce waste.
IoT in Construction Case Study: Health Condition Safety (HCS)
HCS has adapted wearable technology originally developed for high-performance sports applications to reduce or eliminate many of the risks commonly associated with industries such as energy, manufacturing, warehouse and distribution, and large-scale construction.
Adaptable to almost any high-risk sector, the technology has real-time and long-term planning applications for workers, site managers, and even architects and engineers.
On a construction site, if a worker wearing HCS sensors enters a “danger zone” — such as the blind spot around a piece of heavy machinery — the system can warn the worker to move to a safer location or automatically shut down the machine.
“If you know the past and understand the present, then you can predict the future. That’s HCS’ vision for work-site safety; our tools are a big, important step in that direction.
Construction and other key sectors will always contain some risk, but by learning from employees, machines, and the buildings themselves, HCS is helping companies mitigate many of the biggest risks.”
- Peter Raymond, CEO bij Health Condition Safety
IoT in Agriculture
Despite what the laymen may think, agriculture is one of the fastest-evolving industries. Farmers can leverage IoT to monitor and control crops and livestock in real time to increase their efficiency yield, and reduce waste.
Precision agriculture and livestock monitoring allow farmers to monitor the health and behavior of plants and animals alike, gather information on processes, plan for the future, and even intervene when something goes wrong.
They can do so remotely with drones and robotics, which can survey the land from the sky, apply pesticides and fertilizers, and even perform tasks such as weeding and harvesting.
On top of that, IoT also allows farmers to minimize their negative impact on their land and the environment as a whole. Sensors can track water usage, soil erosion, and air quality.
IoT in Agriculture Case Study: John Deere
Agriculture has not traditionally been a highly connected industry. Producers have been aware of what goes into the ground and what goes out the field gate, but data on what happens in between has been a blind spot until recently.
John Deere uses the IoT to connect each vehicle to a mobile online platform called JDLink, which gives farmers and their dealers remote access to fleet location, utilization, and diagnostic data for each machine.
Its John Deere Operations Center offers comprehensive IoT solutions for farmers, including wireless data streaming of production data, mobile monitoring, and real-time weather and crop reporting.
Networked sensors and historical and real-time data on weather, soil conditions, and crop status help farmers enhance the value of their operations by ensuring equipment operates reliably.
They optimize each job by ensuring that crops are planted and harvested when and how they will produce the best yields and achieving what John Deere calls “agronomic optimization” by engaging the trusted partners of the farmer to analyze data and recommend changes for future crop years.
Though John Deere’s connected machines help farmers increase efficiency and get more out of their operation, the company’s vision for connected agriculture extends well beyond the individual farm.
Ultimately, John Deere aims to transform the agriculture industry by using data to foster collaboration between farmers and others in dispersed sectors, including suppliers who provide seeds, fertilizers, and other materials to equipment manufacturers, retailers, and other agronomic specialists.
With real-time data transfer and remote visualization, trusted advisers can be involved in up-to-the-minute decision-making without being physically present at the farm site.
For John Deere customers that utilize this connection, their dealer can remotely diagnose a machine malfunction, reducing downtime and maintenance costs. In real-time, growers can connect with retailers and buyers to manage supply and product transportation.
That’s not to say what John Deere is doing is easy. Companies in different sectors of the agriculture industry aren’t used to working together.
They often see each other as rivals or view cross-industry partnerships as competitive threats. But neither cultural nor technological challenges are stopping John Deere.
“By and large, the decisions farmers make result from the mental heuristic they have, the computer that sits between their ears. Producers get an opportunity to grow a crop 40 times on average, and every time, in most cases, they’re betting the entire operation on their past experiences.
Farmers today are under significant pressure to produce more with less, all while managing greater operational complexity. We want to try to bring more insight into it by enabling better agronomic decisions, machine performance, and job performance.
We see our efforts to bring IoT to agriculture as a natural extension of what we’ve been doing for 178 years,” Pinkston said. “Our goal is the same as it has always been: helping producers be more efficient and effective and ensuring they’re more profitable.”
– Patrick Pinkston, Vice President of Information Solutions in Agriculture and Turf Division at John Deere
IoT in Transportation
The Internet of Things is also revolutionizing the transportation industry. Smart logistics systems allow providers to track their supply chain in real-time, providing insights into the delivery process.
For example, IoT devices allow connected vehicles to communicate with each other to help reduce congestion, improve safety, and increase fuel efficiency.
These sensors can track the vehicles’ performance and maintenance needs. Autonomous cars can notify each other of their presence and avoid collisions; route optimization tech helps prevent traffic jams.
IoT in Transportation Case Study: Mercedes-Benz Group & IBM
Since its founding in 1924, the Mercedes-Benz Group (formerly Daimler) has become one of the world’s premier automotive manufacturers, producing highly recognizable brands such as Mercedes, Maybach, Smart, and Freightliner.
Not satisfied with using IoT technologies to revolutionize internal operations, Mercedes-Benz turned to IBM to help launch car2go, an on-demand fleet of eco-friendly Smart cars that users can reserve through a mobile app.
Car2go represents a bold reimagining of the automaker’s role in the broader transportation industry, and none of what it does would have been possible without the IoT.
Sensors and wireless communications allow the company to monitor individual vehicle performance, analyze data to increase efficiency and provide an accessible network of vehicles to its customers.
An intuitive mobile app allows members to take any car2go vehicles distributed around them or reserve a car for future use. This provides customers with easy access to a vehicle when needed, without requiring them to purchase a car or pay for a parking spot, which can be very expensive in the large cities car2go serves.
Mercedes-Benz’s use of IoT technology allows creative collaboration with adjacent industries. For example, user-specific data makes it possible to offer customized insurance policies for the user and trip instead of traditional policies based on aggregate data for all users.
IBM has provided the technological expertise and tools and fostered the cross-industry relationships necessary to make car2go a success.
In conclusion…
While the Internet of Things is still in its comparative infancy, IoT technology is already doing a lot to revolutionize many of the most important industries. Despite the challenges the space suffers, it ultimately provides more benefits.
You can hold off on completely interconnecting your home for now. But the truth is, the time is ripe to start experimenting with implementing IoT solutions into your company’s processes. As the tech becomes more easily available, more competitors will jump on.
And you don’t want to get left behind.